Degradation of oxidative stress-induced denatured albumin in rat liver endothelial cells

Author:

Bito Ryuji,Hino Sayaka,Baba Atsushi,Tanaka Miharu,Watabe Haruka,Kawabata Hiroaki

Abstract

We previously identified conformationally denatured albumin (D2 and D3 albumin) in rats with endotoxicosis (Bito R, Shikano T, and Kawabata H. Biochim Biophys Acta 1646: 100–111, 2003). In the present study, we attempted first to confirm whether the denatured albumins generally increase in conditions of oxidative stress and second to characterize the degradative process of the denatured albumin using primary cultured rat liver endothelial cells. We used five models of oxidative stress, including endotoxicosis, ischemic heart disease, diabetes, acute inflammation, and aging, and found that serum concentrations of D3 albumin correlate with the serum levels of thiobarbituric acid-reactive substance ( R = 0.87), whereas the concentrations of D2 albumin are 0.52. Ligand blot analysis showed that the D3 albumin binds to gp18 and gp30, which are known endothelial scavenger receptors for chemically denatured albumin. Primary cultured rat liver endothelial cells degraded the FITC-D3 albumin, and the degradation rate decreased to ∼60% of control levels in response to anti-gp18 and anti-gp30 antibodies, respectively. An equimolar mixture of these antibodies produced an additive inhibitory effect on both uptake and degradation, resulting in levels ∼20% those of the control. Furthermore, filipin and digitonin, inhibitors of the caveolae-related endocytic pathway, reduced the FITC-D3 albumin uptake and degradation to <20%. Laser-scanning confocal microscopic observation supported these data regarding the uptake and degradation of D3 albumin. These results indicate that conformationally denatured D3 albumin occurs generally under oxidative stress and is degraded primarily via gp18- and gp30-mediated and caveolae-related endocytosis in liver endothelial cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3