Impaired foot-force direction regulation during postural loaded locomotion in individuals poststroke

Author:

Liang Jing Nong12,Brown David A.123

Affiliation:

1. Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois;

2. Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and

3. Department of Physical Therapy, School of Health Related Professions, University of Alabama at Birmingham, Birmingham, Alabama

Abstract

Following stroke, hemiparesis results in impaired motor control. Specifically, inappropriate direction of foot-forces during locomotion has been reported. In our previous study ( Liang and Brown 2011 ) that examined poststroke foot-force direction during a seated, supported locomotor task, we observed that foot-force control capabilities were preserved poststroke. In this current study, we sought to better understand the mechanisms underlying the interaction of locomotor and postural control as an interactive mechanism that might interfere, poststroke, with appropriate foot-force generation. We designed an experiment in which participants performed biomechanically controlled locomotor tasks, under posturally challenged pedaling conditions while they generated mechanical output that was comparable to pedaling conditions without postural challenge, thus allowing us to monitor the strategies that the nervous system adopts when postural conditions were manipulated. We hypothesized that, with postural influence, individuals poststroke would generate inappropriate shear forces accompanied by inappropriate changes to muscle activity patterns when performing a mechanically controlled locomotor task, and would be exaggerated with increased postural loading. Sixteen individuals with chronic poststroke hemiparesis and 14 age-similar nonimpaired controls pedaled on a cycle ergometer under 1) seated supported and 2) nonseated postural loaded pedaling conditions, generating matched pedal force outputs of two effort levels. When we compared postural influence with seated pedaling, we observed increased magnitudes of forward-directed shear forces in the paretic legs associated with increased magnitude of leg extensor muscle activity, but not in controls. These findings provide evidence to support a model that describes independent controllers for posture and locomotion, but that the interaction between the two controllers is impaired poststroke.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3