Impaired muscle phasing systematically adapts to varied relative angular relationships during locomotion in people poststroke

Author:

Alibiglou Laila12,Brown David A.123

Affiliation:

1. Department of Physical Therapy and Human Movement Sciences,

2. Interdepartmental Neuroscience Program (NUIN), and

3. Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois

Abstract

After stroke, hemiparesis will result in impairments to locomotor control. Specifically, muscle coordination deficits, in the form of inappropriately phased muscle-activity patterns, occur in both the paretic and nonparetic limbs. These dysfunctional paretic muscle-coordination patterns can adapt to somatosensory inputs, and also the sensorimotor state of nonparetic limb can influence paretic limb. However, the relative contribution of interlimb pathways for improving paretic muscle-activation patterns in terms of phasing remains unknown. In this study, we investigated whether the paretic muscle-activity phasing can be influenced by the relative angular-spatial relationship of the nonparetic limb by using a split-crank ergometer, where the cranks could be decoupled. Eighteen participants with chronic stroke were asked to pedal bilaterally during each task while surface electromyogram signals were recorded bilaterally from four lower extremity muscles (vastus medialis, rectus femoris, tibialis anterior, and soleus). During each experiment, the relative angular crank positions were manipulated by increasing or decreasing their difference by randomly ordered increments of 30° over the complete cycle [0° (in phase pedaling), 30°, 60°, 90°, 120°, 150°, 180° (standard pedaling), 210°, 240°, 270°, 300°, 330° (out of phase pedaling)]. We found that the paretic and nonparetic muscle phasing in the cycle systematically adapted to varied relative angular relationships, and this systematic relationship was well modeled by a sinusoidal relationship. Also, the paretic uniarticular muscle (vastus medialis) showed larger phase shifts compared with biarticular muscle (rectus femoris). More importantly, for each stroke subject, we demonstrated an exclusive crank-angular relation that resulted in the generation of more appropriately phased paretic muscle activity. These findings provide new evidence to better understand the capability of impaired nervous system to produce a more normalized muscle-phasing pattern poststroke.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3