Bilateral Limb Phase Relationship and Its Potential to Alter Muscle Activity Phasing During Locomotion

Author:

Alibiglou Laila12,López-Ortiz Citlali34,Walter Charles B.5,Brown David A.123

Affiliation:

1. Department of Physical Therapy and Human Movement Sciences,

2. Interdepartmental Neuroscience Program (NUIN), and

3. Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University;

4. Department of Physical Therapy, Governors State University, University Park, Illinois

5. Department of Kinesiology and Nutrition, University Of Illinois, Chicago, Illinois; and

Abstract

It is well established that the sensorimotor state of one limb can influence another limb and therefore bilateral somatosensory inputs make an important contribution to interlimb coordination patterns. However, the relative contribution of interlimb pathways for modifying muscle activation patterns in terms of phasing is less clear. Here we studied adaptation of muscle activity phasing to the relative angular positions of limbs using a split-crank ergometer, where the cranks could be decoupled to allow different spatial angular position relationships. Twenty neurologically healthy individuals performed the specified pedaling tasks at different relative angular positions while surface electromyographic (EMG) signals were recorded bilaterally from eight lower extremity muscles. During each experiment, the relative angular crank positions were altered by increasing or decreasing their difference by randomly ordered increments of 30° over the complete cycle [0° (in phase pedaling); 30, 60, 90, 120, 150, and 180° (standard pedaling); and 210, 240, 270, 300, and 330° out of phase pedaling]. We found that manipulating the relative angular positions of limbs in a pedaling task caused muscle activity phasing changes that were either delayed or advanced, dependent on the relative spatial position of the two cranks and this relationship is well-explained by a sine curve. Further, we observed that the magnitude of phasing changes in biarticular muscles (like rectus femoris) was significantly greater than those of uniarticular muscles (like vastus medialis). These results are important because they provide new evidence that muscle phasing can be systematically influenced by interlimb pathways.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3