Posttranscriptional control of aquaporin-2 abundance by vasopressin in renal collecting duct principal cells

Author:

Hasler Udo,Nielsen Søren,Féraille Eric,Martin Pierre-Yves

Abstract

Prevailing expression levels of aquaporin-2 (AQP2) mRNA play a major role in regulating AQP2 protein abundance. Here, we investigated whether AQP2 protein abundance is regulated at a posttranscriptional level as well. The expression levels of both AQP2 mRNA and protein increase in response to arginine vasopressin (AVP) in a concentration- and time-dependent manner in cultured immortalized mouse collecting duct principal cells (mpkCCDcl4cells). AVP washout from the medium of AVP-pretreated cells revealed that AQP2 mRNA expression progressively decreased over time, whereas AQP2 protein abundance first increased immediately after AVP washout and then gradually decreased over time. Inversely, increasing AVP concentration led to a time-dependent increase of AQP2 mRNA, whereas AQP2 protein abundance first decreased immediately after AVP supplementation and then gradually increased over time. These transient effects arose from altered V2-receptor activity because they could be abolished by SR-121463B, a specific V2-receptor antagonist. Although cycloheximide administration had no effect on transient alterations of AQP2 protein content, these effects were attenuated by administration of chloroquine, a lysosomal inhibitor, or lactacystin, a proteasomal inhibitor. Short-term inhibition of PKA activity significantly increased AQP2 protein abundance and blunted the transient alterations of AQP2 protein content induced by AVP washout and supplementation. In addition, phosphorylated AQP2 abundance increased immediately after AVP supplementation. These results indicate that in response to AVP AQP2 protein abundance in collecting duct principal cells is principally influenced by AQP2 mRNA content but is additionally regulated by PKA-dependent negative feedback acting on AQP2 protein degradation.

Publisher

American Physiological Society

Subject

Physiology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3