Fasting downregulates renal water channel AQP2 and causes polyuria

Author:

Amlal Hassane1,Chen Qian1,Habo Khalid1,Wang Zhaohui1,Soleimani Manoocher12

Affiliation:

1. Department of Medicine, University of Cincinnati School of Medicine, Cincinnati MSB 5502; and

2. Veterans Affairs Medical Center at Cincinnati, Ohio

Abstract

Starvation causes impairment in the urinary concentrating ability. The mechanism of this defect, however, remains unknown. We tested the possibility that food deprivation might affect the expression and activity of aquaporins (AQP1, 2), thereby impairing renal water reabsorption in the kidney. Rats fasted for 24 h exhibited severe polyuria (urine volume increased from 11 before fasting to 29 ml/24 h after fasting, P < 0.0001) along with failure to concentrate their urine (urine osmolality decreased from 1,485 before fasting to 495 mosmol/kgH2O after fasting, P < 0.0001). Refeeding for 24 h returned the urinary concentrating ability back to normal. Northern hybridization and immunoblot analysis demonstrated that fasting was associated with a decrease in AQP2 protein (−80%, P ≤ 0.002) and mRNA levels (−69%, P ≤ 0.003) in the outer medulla. In the cortex, fasting decreased AQP2 protein abundance by 60% ( P ≤ 0.004) but did not alter its mRNA expression. During the recovery phase, AQP2 expression returned to normal level in both tissues. In the inner medulla, the expression of AQP2 was not altered in fasting, but was increased significantly at both protein ( ± 92%) and mRNA ( ± 43%) levels during the recovery from fasting. The proximal nephron water channel (AQP1) was not affected in response to fasting or recovery from fasting. We conclude that 1) fasting impairs the urinary concentrating ability in rats, and 2) the renal water-handling defect in fasting results specifically from the downregulation of AQP2 in the cortical and outer medullary collecting duct.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3