High salt intake activates the hypothalamic–pituitary–adrenal axis, amplifies the stress response, and alters tissue glucocorticoid exposure in mice

Author:

Costello Hannah M1ORCID,Krilis Georgios1,Grenier Celine1,Severs David2,Czopek Alicja1,Ivy Jessica R1ORCID,Nixon Mark1,Holmes Megan C1,Livingstone Dawn E W1ORCID,Hoorn Ewout J2ORCID,Dhaun Neeraj1ORCID,Bailey Matthew A1ORCID

Affiliation:

1. Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh , Edinburgh, EH16 4TJ United Kingdom

2. Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam , 3000 CA Rotterdam , The Netherlands

Abstract

Abstract Aims High salt intake is common and contributes to poor cardiovascular health. Urinary sodium excretion correlates directly with glucocorticoid excretion in humans and experimental animals. We hypothesized that high salt intake activates the hypothalamic–pituitary–adrenal axis activation and leads to sustained glucocorticoid excess. Methods and results In male C57BL/6 mice, high salt intake for 2–8 weeks caused an increase in diurnal peak levels of plasma corticosterone. After 2 weeks, high salt increased Crh and Pomc mRNA abundance in the hypothalamus and anterior pituitary, consistent with basal hypothalamic–pituitary–adrenal axis activation. Additionally, high salt intake amplified glucocorticoid response to restraint stress, indicative of enhanced axis sensitivity. The binding capacity of Corticosteroid-Binding Globulin was reduced and its encoding mRNA downregulated in the liver. In the hippocampus and anterior pituitary, Fkbp5 mRNA levels were increased, indicating increased glucocorticoid exposure. The mRNA expression of the glucocorticoid-regenerating enzyme, 11β-hydroxysteroid dehydrogenase Type 1, was increased in these brain areas and in the liver. Sustained high salt intake activated a water conservation response by the kidney, increasing plasma levels of the vasopressin surrogate, copeptin. Increased mRNA abundance of Tonebp and Avpr1b in the anterior pituitary suggested that vasopressin signalling contributes to hypothalamic–pituitary–adrenal axis activation by high salt diet. Conclusion Chronic high salt intake amplifies basal and stress-induced glucocorticoid levels and resets glucocorticoid biology centrally, peripherally and within cells.

Funder

British Heart Foundation

Kidney Research UK

Chief Scientist Office Senior Clinical Research Fellowship

Creative Commons Attribution

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3