cAMP increases surface expression of NKCC2 in rat thick ascending limbs: role of VAMP

Author:

Ortiz Pablo A.

Abstract

NaCl absorption by the thick ascending limb of Henle’s loop (TAL) is mediated by the apical Na-K-2Cl cotransporter NKCC2. cAMP increases NaCl absorption in the TAL by stimulating NKCC2. In oocytes, cAMP increases NKCC2 activity by regulating its trafficking. However, the mechanism by which cAMP stimulates NKCC2 in TALs is not clear. We hypothesized that cAMP increases surface expression of NKCC2 and NaCl absorption in TALs and that vesicle-associated membrane protein (VAMP) is involved in this mechanism. We used surface biotinylation of rat medullary TALs (mTAL) to examine surface and total NKCC2 levels. When mTAL suspensions were treated with dibutyryl cAMP (db-cAMP) or forskolin plus IBMX for 20 min, surface NKCC2 expression increased by 126 ± 23 and 92 ± 17% above basal, respectively ( P < 0.03). No changes in total NKCC2 expression were observed, suggesting that cAMP increased translocation of NKCC2. We studied the role of VAMP in NKCC2 translocation and found that incubating mTALs with tetanus toxin (30 nM), which inhibits vesicle trafficking by inactivating VAMP-2 and -3, completely blocked the stimulatory effect of db-cAMP on surface NKCC2 expression (tetanus toxin = 100% vs. tetanus toxin + db-cAMP = 102 ± 21% of control; not significant). We studied VAMP-2 and -3 expression and localization in isolated perfused TALs by confocal microscopy and found that both of them were located in the subapical space of the TAL. Finally, in isolated perfused mTALs, db-cAMP increased net Cl absorption by 95.0 ± 34.8% ( P < 0.03), and pretreatment of TALs with tetanus toxin blocked the stimulation of Cl absorption (from 110.9 ± 15.9 to 109.7 ± 15.6 pmol·min−1·mm−1; not significant). We concluded that cAMP increases NKCC2 surface expression by a mechanism involving VAMP and that NKCC2 trafficking to the apical membrane is involved in the stimulation of TAL NaCl absorption by cAMP.

Publisher

American Physiological Society

Subject

Physiology

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3