H+ secretion is inhibited by clostridial toxins in an inner medullary collecting duct cell line

Author:

Alexander Edward A.1,Shih Theodora1,Schwartz John H.1

Affiliation:

1. Renal Section, Boston Medical Center and Departments of Medicine, Physiology and Pathology, Boston University School of Medicine, Boston, Massachusetts 02118-2908

Abstract

Renal epithelial cell H+secretion is an exocytic-endocytic phenomenon. In the inner medullary collecting duct (IMCD) cell line, which we have utilized as a model of renal epithelial cell acid secretion, we found previously that acidification increased exocytosis and alkalinization increased endocytosis. It is likely, therefore, that the rate of proton secretion is regulated by the membrane insertion and retrieval of proton pumps. There is abundant evidence from studies in the nerve terminal and the chromaffin cell that vesicle docking, membrane fusion, and discharge of vesicular contents (exocytosis) involve a series of interactions among so-called trafficking proteins. The clostridial toxins, botulinum and tetanus, are proteases that specifically inactivate some of these proteins. In these experiments we demonstrated, by immunoblot and immunoprecipitation, the presence in this IMCD cell line of the specific protein targets of these toxins, synaptobrevin/vesicle-associated membrane proteins (VAMP), syntaxin, and synaptosomal-associated protein-25 (SNAP-25). Furthermore, we showed that these toxins markedly inhibit the capacity of these cells to realkalinize after an acid load. Thus these data provide new insight into the mechanism for H+ secretion in the IMCD.

Publisher

American Physiological Society

Subject

Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3