Affiliation:
1. Renal Section, Boston University Medical Center, and Departments of
2. Medicine,
3. Physiology, and
4. Pathology, Boston University School of Medicine, Boston, Massachusetts 02118
Abstract
The trafficking of H+-ATPase vesicles to the apical membrane of inner medullary collecting duct (IMCD) cells utilizes a mechanism similar to that described in neurosecretory cells involving soluble N-ethylmaleimide-sensitive factor attachment protein target receptor (SNARE) proteins. Regulated exocytosis of these vesicles is associated with the formation of SNARE complexes. Clostridial neurotoxins that specifically cleave the target (t-) SNARE, syntaxin-1, or the vesicle SNARE, vesicle-associated membrane protein-2, reduce SNARE complex formation, H+-ATPase translocation to the apical membrane, and inhibit H+ secretion. The purpose of these experiments was to characterize the physiological role of a second t-SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP)-23, a homologue of the neuronal SNAP-25, in regulated exocytosis of H+-ATPase vesicles. Our experiments document that 25–50 nM botulinum toxin (Bot) A or E cleaves rat SNAP-23 and thereby reduces immunodetectable and35S-labeled SNAP-23 by >60% within 60 min. Addition of 25 nM BotE to IMCD homogenates reduces the amount of the 20 S-like SNARE complex that can be immunoprecipitated from the homogenate. Treatment of intact IMCD monolayers with BotE reduces the amount of H+-ATPase translocated to the apical membrane by 52 ± 2% of control and reduces the rate of H+ secretion by 77 ± 3% after acute cell acidification. We conclude that SNAP-23 is a substrate for botulinum toxin proteolysis and has a critical role in the regulation of H+-ATPase exocytosis and H+ secretion in these renal epithelial cells.
Publisher
American Physiological Society
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献