Acute reactive oxygen species (ROS)-dependent effects of IL-1β, TNF-α, and IL-6 on the glomerular filtration barrier (GFB) in vivo

Author:

Sverrisson Kristinn1,Axelsson Josefin1,Rippe Anna1,Asgeirsson Daniel1,Rippe Bengt1

Affiliation:

1. Department of Nephrology, Lund University, Lund, Sweden

Abstract

This study was performed to investigate the immediate actions of the proinflammatory cytokines IL-1β, TNF-α, and IL-6 on the permeability of the glomerular filtration barrier (GFB) in rats and to test whether these actions are dependent upon the release of reactive oxygen species (ROS). In anesthetized rats, blood access was achieved and the left ureter was cannulated for urine collection. Rats were continuously infused intravenously with either IL-1β (0.4 and 2 μg·kg−1·h−1), TNF-α (0.4 and 2 μg·kg−1·h−1), or IL-6 (4 and 8 μg·kg−1·h−1), together with polydisperse FITC-Ficoll-70/400 and inulin for 1 h. Plasma and urine samples were analyzed by high performance size exclusion chromatography (HPSEC) for determination of glomerular sieving coefficients (θ). The glomerular filtration rate (GFR) was also assessed (51Cr-EDTA). In separate experiments, the superoxide scavenger tempol (30 mg·kg−1·h−1) was given before and during cytokine infusions. IL-1β and TNF-α caused rapid, partly reversible increases in glomerular permeability to large molecules (Ficoll50–80Å), peaking at 5–30 min, while IL-6 caused a more gradual increase in permeability, leveling off at 60 min. Tempol almost completely abrogated the glomerular permeability effects of the cytokines infused. In conclusion IL-1β, TNF-α, and IL-6, when infused systemically, caused immediate and partly reversible increases in glomerular permeability, which could be inhibited by the superoxide scavenger tempol, suggesting an important role of ROS in acute cytokine-induced permeability changes in the GFB.

Funder

Vetenskapsradet, vetenskapsradet@vr.se, Principal Investigator Bengt Rippe

Hjart-Lungfonden, info@hjart-lungfonden.se, Principal Investigator Bengt Rippe

Lund University Medical Faculty Foundation, liselott.gelkner@med.lu.se, Principal Investigator Bengt Rippe

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3