Accelerated epigenetic age, inflammation, and gene expression in lung: comparisons of smokers and vapers with non-smokers

Author:

Song Min-Ae,Mori Kellie M.,McElroy Joseph P.,Freudenheim Jo L.,Weng Daniel Y.,Reisinger Sarah A.,Brasky Theodore M.,Wewers Mark D.,Shields Peter G.

Abstract

Abstract Background Cigarette smoking and aging are the main risk factors for pulmonary diseases, including cancer. Epigenetic aging may explain the relationship between smoking, electronic cigarette vaping, and pulmonary health. No study has examined smoking and vaping-related epigenetic aging in relation to lung biomarkers. Methods Lung epigenetic aging measured by DNA methylation (mAge) and its acceleration (mAA) was assessed in young (age 21–30) electronic cigarette vapers (EC, n = 14, including 3 never-smoking EC), smokers (SM, n = 16), and non-EC/non-SM (NS, n = 39). We investigated relationships of mAge estimates with chronological age (Horvath-mAge), lifespan/mortality (Grim-mAge), telomere length (TL-mAge), smoking/EC history, urinary biomarkers, lung cytokines, and transcriptome. Results Compared to NS, EC and SM had significantly older Grim-mAge, shorter TL-mAge, significantly accelerated Grim-mAge and decelerated TL-mAge. Among SM, Grim-mAA was associated with nicotine intake and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). For EC, Horvath-mAA was significantly correlated with puffs per day. Overall, cytokines (IL-1β, IL-6, and IL-8) and 759 transcripts (651 unique genes) were significantly associated with Grim-mAA. Grim-mAA-associated genes were highly enriched in immune-related pathways and genes that play a role in the morphology and structures of cells/tissues. Conclusions Faster lung mAge for SM is consistent with prior studies of blood. Faster lung mAge for EC compared to NS indicates possible adverse pulmonary effects of EC on biological aging. Our findings support further research, particularly on epigenetic markers, on effects of smoking and vaping on pulmonary health. Given that most EC are former smokers, further study is needed to understand unique effects of electronic cigarettes on biological aging.

Funder

National Institutes of Health

National Heart, Lung, and Blood Institute

Prevent Cancer Foundation

Ohio State University research start-up funds

Ohio State University Pelotonia Intramural Research Funds

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3