Author:
Song Min-Ae,Mori Kellie M.,McElroy Joseph P.,Freudenheim Jo L.,Weng Daniel Y.,Reisinger Sarah A.,Brasky Theodore M.,Wewers Mark D.,Shields Peter G.
Abstract
Abstract
Background
Cigarette smoking and aging are the main risk factors for pulmonary diseases, including cancer. Epigenetic aging may explain the relationship between smoking, electronic cigarette vaping, and pulmonary health. No study has examined smoking and vaping-related epigenetic aging in relation to lung biomarkers.
Methods
Lung epigenetic aging measured by DNA methylation (mAge) and its acceleration (mAA) was assessed in young (age 21–30) electronic cigarette vapers (EC, n = 14, including 3 never-smoking EC), smokers (SM, n = 16), and non-EC/non-SM (NS, n = 39). We investigated relationships of mAge estimates with chronological age (Horvath-mAge), lifespan/mortality (Grim-mAge), telomere length (TL-mAge), smoking/EC history, urinary biomarkers, lung cytokines, and transcriptome.
Results
Compared to NS, EC and SM had significantly older Grim-mAge, shorter TL-mAge, significantly accelerated Grim-mAge and decelerated TL-mAge. Among SM, Grim-mAA was associated with nicotine intake and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). For EC, Horvath-mAA was significantly correlated with puffs per day. Overall, cytokines (IL-1β, IL-6, and IL-8) and 759 transcripts (651 unique genes) were significantly associated with Grim-mAA. Grim-mAA-associated genes were highly enriched in immune-related pathways and genes that play a role in the morphology and structures of cells/tissues.
Conclusions
Faster lung mAge for SM is consistent with prior studies of blood. Faster lung mAge for EC compared to NS indicates possible adverse pulmonary effects of EC on biological aging. Our findings support further research, particularly on epigenetic markers, on effects of smoking and vaping on pulmonary health. Given that most EC are former smokers, further study is needed to understand unique effects of electronic cigarettes on biological aging.
Funder
National Institutes of Health
National Heart, Lung, and Blood Institute
Prevent Cancer Foundation
Ohio State University research start-up funds
Ohio State University Pelotonia Intramural Research Funds
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Developmental Biology,Genetics,Molecular Biology
Reference66 articles.
1. Collaborators GBDRTC. Global, regional, and national burden of respiratory tract cancers and associated risk factors from 1990 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Respir Med. 2021;9(9):1030–49.
2. Hartmann-Boyce J, McRobbie H, Lindson N, Bullen C, Begh R, Theodoulou A, Notley C, Rigotti NA, Turner T, Butler AR, et al. Electronic cigarettes for smoking cessation. Cochrane Database Syst Rev. 2021;4(4):CD010216.
3. Wu X, Huang Q, Javed R, Zhong J, Gao H, Liang H. Effect of tobacco smoking on the epigenetic age of human respiratory organs. Clin Epigenet. 2019;11(1):183.
4. Nicita-Mauro V, Basile G, Maltese G, Nicita-Mauro C, Gangemi S, Caruso C. Smoking, health and ageing. Immun Ageing. 2008;5:10.
5. Oelsner EC, Balte PP, Bhatt SP, Cassano PA, Couper D, Folsom AR, Freedman ND, Jacobs DR Jr, Kalhan R, Mathew AR, et al. Lung function decline in former smokers and low-intensity current smokers: a secondary data analysis of the NHLBI Pooled Cohorts Study. Lancet Respir Med. 2020;8(1):34–44.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献