Increased glomerular permeability to negatively charged Ficoll relative to neutral Ficoll in rats

Author:

Asgeirsson Daniel,Venturoli Daniele,Rippe Bengt,Rippe Catarina

Abstract

It is established that the glomerular filter sieves macromolecules based on their size, shape, and charge. Anionic proteins are thus retarded compared with their neutral or cationic counterparts. However, recent studies have indicated that charge effects are small, or even “anomalous,” for polysaccharides. We therefore investigated the impact of charge on the glomerular permeability to polysaccharides by comparing sieving coefficients (θ; primary urine-to-plasma concentration ratio) for negatively charged, carboxymethylated (CM) FITC-Ficoll and FITC-dextran with their neutral counterparts. For these probes, θ were determined in anesthetized Wistar rats [269 ± 2.7 g (±SE; n = 36)], whose ureters were cannulated for urine sampling. The glomerular filtration rate was assessed using FITC-inulin. Polysaccharides were constantly infused, and after equilibration, urine was collected and a midpoint plasma sample was taken. Size and concentration determinations of the FITC-labeled polysaccharides were achieved by size-exclusion HPLC (HPSEC). For CM-Ficoll, θ was significantly increased (32 times at 55 Å) compared with that of uncharged Ficoll. A small increase in θ for CM-dextran compared with neutral dextran was also observed (1.8 times at 55 Å). In conclusion, negatively charged Ficoll relative to neutral Ficoll was found to be markedly hyperpermeable across the glomerular filter. Furthermore, negatively charged Ficoll was observed to be larger on HPSEC compared with its neutral counterpart of the same molecular weight. It is proposed that the introduction of negative charges in the “dendrimeric,” cross-linked Ficoll molecule may alter its configuration, so as to make it more extended, and conceivably, more flexible, thereby increasing its glomerular permeability.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3