Molecular targeting of renal inflammation using drug delivery technology to inhibit NF-κB improves renal recovery in chronic kidney disease

Author:

Chade Alejandro R.123,Williams Maxx L.1,Engel Jason E.1,Williams Erika1,Bidwell Gene L.456ORCID

Affiliation:

1. Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi

2. Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi

3. Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi

4. Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi

5. Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi

6. Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi

Abstract

Inflammation is a major determinant for the progression of chronic kidney disease (CKD). NF-κB is a master transcription factor upregulated in CKD that promotes inflammation and regulates apoptosis and vascular remodeling. We aimed to modulate this pathway for CKD therapy in a swine model of CKD using a peptide inhibitor of the NF-κB p50 subunit (p50i) fused to a protein carrier [elastin-like polypeptide (ELP)] and equipped with a cell-penetrating peptide (SynB1). We hypothesized that intrarenal SynB1-ELP-p50i therapy would inhibit NF-κB-driven inflammation and induce renal recovery. CKD was induced in 14 pigs. After 6 wk, pigs received single intrarenal SynB1-ELP-p50i therapy (10 mg/kg) or placebo ( n = 7 each). Renal hemodynamics were quantified in vivo using multidetector computed tomography before and 8 wk after treatment. Pigs were then euthanized. Ex vivo experiments were performed to quantify renal activation of NF-κB, expression of downstream mediators of NF-κB signaling, renal microvascular density, inflammation, and fibrosis. Fourteen weeks of CKD stimulated NF-κB signaling and downstream mediators (e.g., TNF-α, monocyte chemoattractant protein-1, and IL-6) accompanying loss of renal function, inflammation, fibrosis, and microvascular rarefaction versus controls. All of these were improved after SynB1-ELP-p50i therapy, accompanied by reduced circulating inflammatory cytokines as well, which were evident up to 8 wk after treatment. Current treatments for CKD are largely ineffective. Our study shows the feasibility of a new treatment to induce renal recovery by offsetting inflammation at a molecular level. It also supports the therapeutic potential of targeted inhibition of the NF-κB pathway using novel drug delivery technology in a translational model of CKD.

Funder

NIH

AHA

Publisher

American Physiological Society

Subject

Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3