A kidney-selective biopolymer for targeted drug delivery

Author:

Bidwell Gene L.12ORCID,Mahdi Fakhri1,Shao Qingmei1,Logue Omar C.1,Waller Jamarius P.1,Reese Caleb3,Chade Alejandro R.4

Affiliation:

1. Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi;

2. Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi;

3. Belhaven University, Jackson, Mississippi; and

4. Departments of Physiology and Biophysics, Medicine, and Radiology, University of Mississippi Medical Center, Jackson, Mississippi

Abstract

Improving drug delivery to the kidney using renal-targeted therapeutics is a promising but underdeveloped area. We aimed to develop a kidney-targeting construct for renal-specific drug delivery. Elastin-like polypeptides (ELPs) are nonimmunogenic protein-based carriers that can stabilize attached small-molecule and peptide therapeutics. We modified ELP at its NH2-terminus with a cyclic, seven-amino acid kidney-targeting peptide (KTP) and at its COOH-terminus with a cysteine residue for tracer conjugation. Comparative in vivo pharmacokinetics and biodistribution in rat and swine models and in vitro cell binding studies using human renal cells were performed. KTP-ELP had a longer plasma half-life than ELP in both animal models and was similarly accumulated in kidneys at levels fivefold higher than untargeted ELP, showing renal levels 15- to over 150-fold higher than in other major organs. Renal fluorescence histology demonstrated high accumulation of KTP-ELP in proximal tubules and vascular endothelium. Furthermore, a 14-day infusion of a high dose of ELP or KTP-ELP did not affect body weight, glomerular filtration rate, or albuminuria, or induce renal tissue damage compared with saline-treated controls. In vitro experiments showed higher binding of KTP-ELP to human podocytes, proximal tubule epithelial, and glomerular microvascular endothelial cells than untargeted ELP. These results show the high renal selectivity of KTP-ELP, support the notion that the construct is not species specific, and demonstrate that it does not induce acute renal toxicity. The plasticity of ELP for attachment of any class of therapeutics unlocks the possibility of applying ELP technology for targeted treatment of renal disease in future studies.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

American Heart Association (AHA)

Publisher

American Physiological Society

Subject

Physiology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3