A potential role for caveolin-1 in VEGF-induced fibronectin upregulation in mesangial cells: involvement of VEGFR2 and Src

Author:

Wu Tingting1,Zhang Baifang1,Ye Feng1,Xiao Zeling1

Affiliation:

1. Department of Biochemistry, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, People's Republic of China

Abstract

VEGF is known to be an endothelial cell mitogen that stimulates angiogenesis by promoting endothelial cell survival, proliferation, migration, and differentiation. Recent studies have suggested that VEGF may play a pivotal role in glomerular sclerosis through extracellular matrix protein (ECM) accumulation, although the signaling mechanism is still unclear. The GTPase RhoA has been implicated in VEGF-induced type IV collagen accumulation in some settings. Here we study the role of different VEGF receptors and membrane microdomain caveolae in VEGF-induced RhoA activation and fibronectin upregulation in mesangial cells (MCs). In primary rat MC, VEGF time and dose dependently increased fibronectin production. Rho pathway inhibition blocked VEGF-induced fibronectin upregulation. VEGF-induced RhoA activation was prevented by disrupting caveolae with cholesterol depletion and rescued by cholesterol repletion. VEGF stimulation led to a markedly increased VEGFR2/caveolin-1 but failed to increase VEGFR1/caveolin-1 association. VEGF also increased caveolin-1/Src association and activated Src, and Src inhibitor blocked RhoA activation and fibronectin upregulation. Src-mediated phosphorylation of caveolin-1 on Y14 has also been implicated in signaling responses. Overexpression of nonphosphorylatable caveolin-1 Y14A prevented VEGF-induced RhoA activation and fibronectin upregulation. In vivo, although VEGFR1 and VEGFR2 protein levels were both increased in the kidney cortices of diabetic rats, VEGFR2/caveolin-1 association but not VEGFR1/caveolin-1 association was significantly increased. In conclusion, VEGF-induced RhoA activation and fibronectin upregulation require caveolae and caveolin-1 interaction with VEGFR2 and Src. Interference with caveolin/-ae signaling may provide new avenues for the treatment of fibrotic renal disease.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3