Author:
Kim Sung-Ho,Pei Qing-Mei,Jiang Ping,Liu Juan,Sun Rong-Fei,Qian Xue-Jiao,Liu Jiang-Bo
Abstract
Abstract
Background
Airway mucus hypersecretion is an important pathophysiological feature in asthma. Mucins are glycoproteins that are mainly responsible for the viscoelastic property of mucus, and MUC5AC is a major mucin glycoprotein that is overproduced in asthma. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodeling in asthmatics. Therefore, we sought to investigate the effect of VEGF on MUC5AC expression and study the underlying mechanisms.
Methods
In order to elucidate the precise mechanism underlying the effect of VEGF on MUC5AC expression, we tested the effects of VEGF on RhoA activation and the association of caveolin-1 and VEGFR2 in Primary Bronchial Epithelial Cells.
Results
VEGF up-regulated MUC5AC mRNA and protein levels in a dose- and time-dependent manner, and activated RhoA. Additionally, VEGF-induced MUC5AC expression and RhoA activation were enhanced by disrupting caveolae with cholesterol depletion and reversed by cholesterol repletion, and inhibited by a selective VEGF receptor 2 (VEGFR2) inhibitor SU1498. Furthermore, phospho-VEGFR2 expression was decreased via overexpression of caveolin-1. VEGF treatment reduced the association of caveolin-1 and VEGFR2.
Conclusion
Collectively, our findings suggest that VEGF up-regulates MUC5AC expression and RhoA activation by interaction with VEGFR2, and this phenomenon was related with the association of caveolin-1 and VEGFR2. Further studies on these mechanisms are needed to facilitate the development of treatments for asthma.
Publisher
Springer Science and Business Media LLC
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献