Renal PKC-ε deficiency attenuates acute kidney injury and ischemic allograft injury via TNF-α-dependent inhibition of apoptosis and inflammation

Author:

Rong Song12,Hueper Katja3,Kirsch Torsten1,Greite Robert1,Klemann Christian4,Mengel Michael5,Meier Matthias1,Menne Jan16,Leitges Michael17,Susnik Nathan1,Meier Martin8,Haller Hermann1,Shushakova Nelli16,Gueler Faikah1

Affiliation:

1. Department of Nephrology, Hannover Medical School, Hannover, Germany;

2. The Transplantation Center, Affiliated Hospital, Zunyi Medical College, Zunyi, China;

3. Institute for Diagnostic and Interventional Radiology, Medical School Hannover, Hannover, Germany;

4. Centre for Paediatrics and Adolescent Medicine, Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany

5. Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada;

6. Phenos GmbH, Hannover, Germany;

7. The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway;

8. Imaging Center, Institute for Animal Science, Medical School Hannover, Hannover, Germany; and

Abstract

Acute kidney injury (AKI) increases the risk of morbidity and mortality after major surgery and transplantation. We investigated the effect of PKC-ε deficiency on AKI and ischemic allograft damage after kidney transplantation. PKC-ε-deficient and wild type (WT) control mice were subjected to 35 min of renal pedicle clamping to induce AKI. PKC-ε deficiency was associated with a marked improvement in survival and an attenuated loss of kidney function. Furthermore, functional MRI experiments revealed better renal perfusion in PKC-ε-deficient mice than in WT mice one day after IRI. Acute tubular necrosis and neutrophil infiltration were markedly reduced in PKC-ε-deficient mice. To determine whether this resistance to ischemia-reperfusion injury resulted from changes in local renal cells or infiltrating leukocytes, we studied a life-supporting renal transplant model of ischemic graft injury. We transplanted kidneys from H2b PKC-ε-deficient mice (129/SV) and their corresponding WT littermates into major histocompatibility complex-incompatible H2d recipients (BALB/c) and induced ischemic graft injury by prolonged cold ischemia time. Recipients of WT allografts developed severe renal failure and died within 10 days of transplantation. Recipients of PKC-ε-deficient allografts had better renal function and survival; they had less generation of ROS and upregulation of proinflammatory proteins (i.e., ICAM-1, inducible nitric oxide synthase, and TNF-α) and showed less tubular epithelial cell apoptosis and inflammation in their allografts. These data suggest that local renal PKC-ε expression mediates proapoptotic and proinflammatory signaling and that an inhibitor of PKC-ε signaling could be used to prevent hypoxia-induced AKI.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3