Affiliation:
1. Department of Radiology, The First Affiliated Hospital of Nanjing Medical University , Nanjing, Jiangsu Province, China
2. Department of Radiology, Peking University First Hospital , Beijing, China
Abstract
ABSTRACT
Background
Reliable diagnosis of the cause of renal allograft dysfunction is of clinical importance. The aim of this study is to develop a hybrid deep-learning approach for determining acute rejection (AR), chronic allograft nephropathy (CAN) and renal function in kidney-allografted patients by multimodality integration.
Methods
Clinical and magnetic resonance imaging (MRI) data of 252 kidney-allografted patients who underwent post-transplantation MRI between December 2014 and November 2019 were retrospectively collected. An end-to-end convolutional neural network, namely RtNet, was designed to discriminate between AR, CAN and stable renal allograft recipient (SR), and secondarily, to predict the impaired renal graft function [estimated glomerular filtration rate (eGFR) ≤50 mL/min/1.73 m2]. Specially, clinical variables and MRI radiomics features were integrated into the RtNet, resulting in a hybrid network (RtNet+). The performance of the conventional radiomics model RtRad, RtNet and RtNet+ was compared to test the effect of multimodality interaction.
Results
Out of 252 patients, AR, CAN and SR was diagnosed in 20/252 (7.9%), 92/252 (36.5%) and 140/252 (55.6%) patients, respectively. Of all MRI sequences, T2-weighted imaging and diffusion-weighted imaging with stretched exponential analysis showed better performance than other sequences. On pairwise comparison of resulting prediction models, RtNet+ produced significantly higher macro-area-under-curve (macro-AUC) (0.733 versus 0.745; P = 0.047) than RtNet in discriminating between AR, CAN and SR. RtNet+ performed similarly to the RtNet (macro-AUC, 0.762 versus 0.756; P > 0.05) in discriminating between eGFR ≤50 mL/min/1.73 m2 and >50 mL/min/1.73 m2. With decision curve analysis, adding RtRad and RtNet to clinical variables resulted in more net benefits in diagnostic performance.
Conclusions
Our study revealed that the proposed RtNet+ model owned a stable performance in revealing the cause of renal allograft dysfunction, and thus might offer important references for individualized diagnostics and treatment strategy.
Funder
Nanjing Medical University
Publisher
Oxford University Press (OUP)
Subject
Transplantation,Nephrology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献