Patient-specific targeted bronchial thermoplasty: predictions of improved outcomes with structure-guided treatment

Author:

Donovan Graham M.1ORCID,Elliot John G.2,Boser Stacey R3,Green Francis H. Y.4,James Alan L.5,Noble Peter B.6

Affiliation:

1. Department of Mathematics, University of Auckland, Auckland, New Zealand

2. West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia

3. Cumming School of Medicine, Calgary, Alberta, Canada

4. Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada

5. Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, School of Medicine and Pharmacology, University of Western Australia, Australia

6. School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia

Abstract

Bronchial thermoplasty is a recent treatment for asthma in which ablative thermal energy is delivered to specific large airways according to clinical guidelines. Therefore, current practice is effectively “blind,” as it is not informed by patient-specific data. The present study seeks to establish whether a patient-specific approach based on structural or functional patient data can improve outcomes and/or reduce the number of procedures required for clinical efficacy. We employed a combination of extensive human lung specimens and novel computational methods to predict bronchial thermoplasty outcomes guided by structural or functional data compared with current clinical practice. Response to bronchial thermoplasty was determined from changes in airway responses to strong bronchoconstrictor simulations and flow heterogeneity after one or three simulated thermoplasty procedures. Structure-guided treatment showed significant improvement over current unguided clinical practice, with a single session of structure-guided treatment producing improvements comparable with three sessions of unguided treatment. In comparison, function-guided treatment did not produce a significant improvement over current practice. Structure-guided targeting of bronchial thermoplasty is a promising avenue for improving therapy and reinforces the need for advanced imaging technologies. The functional imaging-guided approach is predicted to be less effective presently, and we make recommendations on how this approach could be improved. NEW & NOTEWORTHY Bronchial thermoplasty is a recent treatment for asthma in which thermal energy is delivered via bronchoscope to specific airways in an effort to directly target airway smooth muscle. Current practice involves the treatment of a standard set of airways, unguided by patient-specific data. We consider the potential for guided treatments, either by functional or structural data from the lung, and show that treatment guided by structural data has the potential to improve clinical practice.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3