Implications of complex anatomical junctions on conductance catheter measurements of coronary arteries

Author:

Choi Hyo Won1,Zhang Zhen-Du1,Farren Neil D.1,Kassab Ghassan S.123

Affiliation:

1. Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana;

2. Department of Surgery, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana; and

3. Department of Cellular and Integrative Physiology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana

Abstract

In vivo, the position of the conductance catheter to measure vessel lumen cross-sectional area may vary depending on where the conductance catheter is deployed in the complex anatomical geometry of arteries, including branches, bifurcations, or curvatures. The objective here is to determine how such geometric variations affect the cross-sectional area (CSA) estimates obtained using the cylindrical model. Computer simulations and in vitro and in vivo experiments were used to assess how the electric field and associated CSA measurement accuracy are affected by three typical in vivo conditions: 1) a vessel with abrupt change in lumen diameter (e.g., transition from aorta to coronary ostia); 2) a vessel with a T-bifurcation or a Y-bifurcation; and 3) a vessel curvature, such as in the right coronary artery, aorta, or pulmonary artery. The error in diameter from simulation results was shown to be relatively small (<7%), unless the detection electrodes were placed near the junction between two different lumen diameters or at a bifurcation junction. Furthermore, the present findings show that the effect of misaligned catheter-vessel geometrical configuration and vessel curvature on measurement accuracy is negligible. Collectively, the findings support the accuracy of the conductance method for sizing blood vessels, despite the geometric complexities of the cardiovascular system, as long as the detection electrodes are not placed at a large discontinuity in diameter or at bifurcation junctions.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3