Impact of surrounding tissue on conductance measurement of coronary and peripheral lumen area

Author:

Won Choi Hyo1,Jansen Benjamin1,Zhang Zhen-Du1,Kassab Ghassan S.123

Affiliation:

1. Department of Biomedical Engineering, Indiana University Purdue University, Indianapolis, IN, USA

2. Department of Surgery, Indiana University Purdue University, Indianapolis, IN, USA

3. Department of Cellular and Integrative Physiology, Indiana University Purdue University, Indianapolis, IN, USA

Abstract

Parallel conductance (electric current flow through surrounding tissue) is an important determinant of accurate measurements of arterial lumen diameter, using the conductance method. The present study is focused on the role of non-uniform geometrical/electrical configurations of surrounding tissue, which are a primary source of electric current leakage. Computational models were constructed to simulate the conductance catheter measurement with two different excitation electrodes spacings (i.e. 12 and 20 mm for coronary and peripheral sizing, respectively) for different vessel–tissue configurations: (i) blood vessel fully embedded in muscle tissue, (ii) blood vessel superficially embedded in muscle tissue, and (iii) blood vessel superficially embedded in muscle tissue with fat covering half of the arterial vessel (anterior portion). The simulations suggest that the parallel conductance and accuracy of measurement is dependent on the inhomogeneous/anisotropic configuration of surrounding tissue, including the asymmetric dimension and anisotropy in electrical conductivity of surrounding tissue. Specifically, the measurement was shown to be accurate as long as the vessel was superficial, regardless of the considerable total surrounding tissue dimension for coronary or peripheral arteries. Moreover, it was shown that the unfavourable impact of parallel conductance on the accuracy of conductance catheter measurement is decreased by the combination of a lower transverse electrical conductivity of surrounding muscle tissue, a smaller electrode spacing and a larger lumen diameter. The present findings confirm that the conductance catheter technique provides an accurate platform for sizing of clinically relevant (i.e. superficial and diseased) arteries.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3