Micron-sized intrapulmonary particle deposition in the developing rat lung

Author:

Schulz Holger12,Eder Gunter2,Bolle Ines23,Tsuda Akira4,Karrasch Stefan25

Affiliation:

1. Institute of Epidemiology I,

2. Comprehensive Pneumology Center, Institute of Lung Biology and Diseases, Helmholtz Zentrum München, Neuherberg;

3. Zentrale Versuchstierhaltung, Ludwig-Maximilians-University Munich, Munich, Germany; and

4. Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts

5. Institute and Outpatient Clinic for Occupational, Social, and Environmental Medicine,

Abstract

Little is known about the effects of postnatal developmental changes in lung architecture and breathing patterns on intrapulmonary particle deposition. We measured deposition in the developing Wistar-Kyoto rat, whose lung development largely parallels that of humans. Deposition of 2-μm sebacate particles was determined in anesthetized, intubated, spontaneously breathing rats on postnatal days (P) 7 to 90 by aerosol photometry (Karrasch S, Eder G, Bolle I, Tsuda A, Schulz H. J Appl Physiol 107: 1293–1299, 2009). Respiratory parameters were determined by body plethysmography. Tidal volume increased substantially from P7 (0.19 ml) to P90 (2.1 ml) while respiratory rate declined from 182 to 107/min. Breath-specific deposition was lowest (9%) at P7 and P90 and markedly higher at P35 (almost 16%). Structural changes of the alveolar region include a ninefold increase in surface area (Bolle I, Eder G, Takenaka S, Ganguly K, Karrasch S, Zeller C, Neuner M, Kreyling WG, Tsuda A, Schulz H. J Appl Physiol 104: 1167–1176, 2008). Particle deposition per unit of time and surface area peaked at P35 and showed a minimum at P90. At an inhaled particle number concentration of 105/cm3, there was an estimated 450, 690, and 330 particles/(min × cm2) at P7, P35, and P90, respectively. Multiple regression models showed that deposition depends on the mean linear intercept as structural component and the breathing parameters, tidal volume, and respiratory rate ( r2 > 0.9). In conclusion, micron-sized particle deposition was dependent on the stage of postnatal lung development. A maximum was observed during late alveolarization (P35), which corresponds to human lungs of about eight years of age. Children at this age may therefore be more susceptible to micron-sized airborne environmental health hazards.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3