Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion, and their interplay

Author:

Hofemeier Philipp1,Sznitman Josué1

Affiliation:

1. Department of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, Israel

Abstract

It is largely acknowledged that inhaled particles ranging from 0.001 to 10 μm are able to reach and deposit in the alveolated regions of the lungs. To date, however, the bulk of numerical studies have focused mainly on micrometer-sized particles whose transport kinematics are governed by convection and sedimentation, thereby capturing only a small fraction of the wider range of aerosols leading to acinar deposition. Too little is still known about the local acinar transport dynamics of inhaled (ultra)fine particles affected by diffusion and convection. Our study aims to fill this gap by numerically simulating the transport characteristics of particle sizes spanning three orders of magnitude (0.01-5 μm) covering diffusive, convective, and gravitational aerosol motion across a multigenerational acinar network. By characterizing the deposition patterns as a function of particle size, we find that submicrometer particles [[Formula: see text] (0.1 μm)] reach deep into the acinar structure and are prone to deposit near alveolar openings; meanwhile, other particle sizes are restricted to accessing alveolar cavities in proximal generations. Our findings underline that a precise understanding of acinar aerosol transport, and ultrafine particles in particular, is contingent upon resolving the complex convective-diffusive interplay in determining their irreversible kinematics and local deposition sites.

Funder

Career Integration Grant

Israel Science Foundation (ISF)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3