Exploring the role of electrostatic deposition on inhaled aerosols in alveolated microchannels

Author:

Bessler Ron,Bhardwaj Saurabh,Malka Daniel,Fishler Rami,Sznitman Josué

Abstract

AbstractLarge amounts of net electrical charge are known to accumulate on inhaled aerosols during their generation using commonly-available inhalers. This effect often leads to superfluous deposition in the extra-thoracic airways at the cost of more efficient inhalation therapy. Since the electrostatic force is inversely proportional to the square of the distance between an aerosol and the airway wall, its role has long been recognized as potentially significant in the deep lungs. Yet, with the complexity of exploring such phenomenon directly at the acinar scales, in vitro experiments have been largely limited to upper airways models. Here, we devise a microfluidic alveolated airway channel coated with conductive material to quantify in vitro the significance of electrostatic effects on inhaled aerosol deposition. Specifically, our aerosol exposure assays showcase inhaled spherical particles of 0.2, 0.5, and 1.1 μm that are recognized to reach the acinar regions, whereby deposition is typically attributed to the leading roles of diffusion and sedimentation. In our experiments, electrostatic effects are observed to largely prevent aerosols from depositing inside alveolar cavities. Rather, deposition is overwhelmingly biased along the inter-alveolar septal spaces, even when aerosols are charged with only a few elementary charges. Our observations give new insight into the role of electrostatics at the acinar scales and emphasize how charged particles under 2 µm may rapidly overshadow the traditionally accepted dominance of diffusion or sedimentation when considering aerosol deposition phenomena in the deep lungs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3