Affiliation:
1. Departments of 1Kinesiology and of
2. Anatomy and Physiology, Kansas State University, Manhattan, Kansas; and
3. Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
Abstract
The purpose of the present investigation was to examine the muscle hyperemic response to steady-state submaximal running exercise in the Goto-Kakizaki (GK) Type II diabetic rat. Specifically, the hypothesis was tested that Type II diabetes would redistribute exercising blood flow toward less oxidative muscles and muscle portions of the hindlimb. GK diabetic ( n = 10) and Wistar control ( n = 8, blood glucose concentration, 13.7 ± 1.6 and 5.7 ± 0.2 mM, respectively, P < 0.05) rats were run at 20 m/min on a 10% grade. Blood flows to 28 hindlimb muscles and muscle portions as well as the abdominal organs and kidneys were measured in the steady state of exercise using radiolabeled 15-μm microspheres. Blood flow to the total hindlimb musculature did not differ between GK diabetic and control rats (161 ± 16 and 129 ± 15 ml·min−1·100g−1, respectively, P = 0.18). Moreover, there was no difference in blood flow between GK diabetic and control rats in 20 of the individual muscles or muscle parts examined. However, in the other eight muscles examined that typically are comprised of a majority of fast-twitch glycolytic (IIb/IIdx) fibers, blood flow was significantly greater (i.e., ↑31–119%, P < 0.05) in the GK diabetic rats. Despite previously documented impairments of several vasodilatory pathways in Type II diabetes these data provide the first demonstration that a reduction of exercising muscle blood flow during submaximal exercise is not an obligatory consequence of this condition in the GK diabetic rat.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献