Respiratory muscle function and activation in chronic obstructive pulmonary disease

Author:

McKenzie David K.,Butler Jane E.,Gandevia Simon C.

Abstract

Inspiratory muscles are uniquely adapted for endurance, but their function is compromised in chronic obstructive pulmonary disease (COPD) due to increased loads, reduced mechanical advantage, and increased ventilatory requirements. The hyperinflation of COPD reduces the flow and pressure-generating capacity of the diaphragm. This is compensated by a threefold increase in neural drive, adaptations of the chest wall and diaphragm shape to accommodate the increased volume, and adaptations of muscle fibers to preserve strength and increase endurance. Paradoxical indrawing of the lower costal margin during inspiration in severe COPD (Hoover's sign) correlates with high inspiratory drive and severe airflow obstruction rather than contraction of radially oriented diaphragm fibers. The inspiratory muscles remain highly resistant to fatigue in patients with COPD, and the ultimate development of ventilatory failure is associated with insufficient central drive. Sleep is associated with reduced respiratory drive and impairments of lung and chest wall function, which are exaggerated in COPD patients. Profound hypoxemia and hypercapnia can occur in rapid eye movement sleep and contribute to the development of cor pulmonale. Inspiratory muscles adapt to chronic loading with an increased proportion of slow, fatigue-resistant fiber types, increased oxidative capacity, and reduced fiber cross-sectional area, but the capacity of the diaphragm to increase ventilation in exercise is compromised in COPD. In COPD, neural drive to the diaphragm increases to near maximal levels in exercise, but it does not develop peripheral muscle fatigue. The improvement in exercise capacity and dyspnea following lung volume reduction surgery is associated with a substantial reduction in neural drive to the inspiratory muscles.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3