Affiliation:
1. Politecnico di Milano, Dipartimento di Bioingegneria, Centro di Bioingegneria, Milan, Italy;
2. Meakins-Christie Laboratories, McGill University, and
3. First Clinica Medica III, Università di Firenze, Florence, Italy
4. Montréal Chest Institute, Montreal, Quebec, Canada H2X 2P4; and
Abstract
Aliverti, A., S. J. Cala, R. Duranti, G. Ferrigno, C. M. Kenyon, A. Pedotti, G. Scano, P. Sliwinski, Peter T. Macklem, and S. Yan. Human respiratory muscle actions and control during exercise. J. Appl. Physiol. 83(4): 1256–1269, 1997.—We measured pressures and power of diaphragm, rib cage, and abdominal muscles during quiet breathing (QB) and exercise at 0, 30, 50, and 70% maximum workload (W˙max) in five men. By three-dimensional tracking of 86 chest wall markers, we calculated the volumes of lung- and diaphragm-apposed rib cage compartments (Vrc,p and Vrc,a, respectively) and the abdomen (Vab). End-inspiratory lung volume increased with percentage of W˙max as a result of an increase in Vrc,p and Vrc,a. End-expiratory lung volume decreased as a result of a decrease in Vab. ΔVrc,a/ΔVab was constant and independent ofW˙max. Thus we used ΔVab/time as an index of diaphragm velocity of shortening. From QB to 70%W˙max, diaphragmatic pressure (Pdi) increased ∼2-fold, diaphragm velocity of shortening 6.5-fold, and diaphragm workload 13-fold. Abdominal muscle pressure was ∼0 during QB but was equal to and 180° out of phase with rib cage muscle pressure at all percent W˙max. Rib cage muscle pressure and abdominal muscle pressure were greater than Pdi, but the ratios of these pressures were constant. There was a gradual inspiratory relaxation of abdominal muscles, causing abdominal pressure to fall, which minimized Pdi and decreased the expiratory action of the abdominal muscles on Vrc,a gradually, minimizing rib cage distortions. We conclude that from QB to 0% W˙max there is a switch in respiratory muscle control, with immediate recruitment of rib cage and abdominal muscles. Thereafter, a simple mechanism that increases drive equally to all three muscle groups, with drive to abdominal and rib cage muscles 180° out of phase, allows the diaphragm to contract quasi-isotonically and act as a flow generator, while rib cage and abdominal muscles develop the pressures to displace the rib cage and abdomen, respectively. This acts to equalize the pressures acting on both rib cage compartments, minimizing rib cage distortion .
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
278 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献