Effect of acute increases in pulmonary vascular pressures on exercise pulmonary gas exchange

Author:

Stickland Michael K.,Welsh Robert C.,Haykowsky Mark J.,Petersen Stewart R.,Anderson William D.,Taylor Dylan A.,Bouffard Marcel,Jones Richard L.

Abstract

The purpose of this study was to determine the effect of acute increases in pulmonary vascular pressures, caused by the application of lower-body positive pressure (LBPP), on exercise alveolar-to-arterial Po2 difference (A-aDo2), anatomical intrapulmonary (IP) shunt recruitment, and ventilation. Eight healthy men performed graded upright cycling to 90% maximal oxygen uptake under normal conditions and with 52 Torr (1 psi) of LBPP. Pulmonary arterial (PAP) and pulmonary artery wedge pressures (PAWP) were measured with a Swan-Ganz catheter. Arterial blood samples were obtained from a radial artery catheter, cardiac output was calculated by the direct Fick method, and anatomical IP shunt was determined by administering agitated saline during continuous two-dimensional echocardiography. LBPP increased both PAP and PAWP while upright at rest, and at all points during exercise (mean increase in PAP and PAWP 3.7 and 4.0 mmHg, respectively, P < 0.05). There were no differences in exercise oxygen uptake or cardiac output between control and LBPP. Despite the increased PAP and PAWP with LBPP, A-aDo2 was not affected. In the upright resting position, there was no evidence of shunt in the control condition, whereas LBPP caused shunt in one subject. At the lowest exercise workload (75 W), shunt occurred in three subjects during control and in four subjects with LBPP. LBPP did not affect IP shunt recruitment during subsequent higher workloads. Minute ventilation and arterial Pco2 were not consistently affected by LBPP. Therefore, small acute increases in pulmonary vascular pressures do not widen exercise A-aDo2 or consistently affect IP shunt recruitment or ventilation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference40 articles.

1. Arborelius M Jr, Ballidin UI, Lilja B, and Lundgren CE. Hemodynamic changes in man during immersion with the head above water. Aerospace Med 43: 592–598, 1972.

2. Berk JL, Hagen JF, Tong RK, Levy ML, and Martin PJ. The role of adrenergic stimulation in the pathogenesis of pulmonary insufficiency. Surgery 82: 366–372, 1977.

3. The use of dopamine to correct the reduced cardiac output resulting from positive end-expiratory pressure

4. Computerized tomography and pulmonary diffusing capacity in highly trained athletes after performing a triathlon

5. Plasma volume expansion does not increase maximal cardiac output or VO2 max in lowlanders acclimatized to altitude

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3