Author:
Calbet José A. L.,Rådegran Göran,Boushel Robert,Søndergaard Hans,Saltin Bengt,Wagner Peter D.
Abstract
With altitude acclimatization, blood hemoglobin concentration increases while plasma volume (PV) and maximal cardiac output (Q̇max) decrease. This investigation aimed to determine whether reduction of Q̇max at altitude is due to low circulating blood volume (BV). Eight Danish lowlanders (3 females, 5 males: age 24.0 ± 0.6 yr; mean ± SE) performed submaximal and maximal exercise on a cycle ergometer after 9 wk at 5,260 m altitude (Mt. Chacaltaya, Bolivia). This was done first with BV resulting from acclimatization (BV = 5.40 ± 0.39 liters) and again 2–4 days later, 1 h after PV expansion with 1 liter of 6% dextran 70 (BV = 6.32 ± 0.34 liters). PV expansion had no effect on Q̇max, maximal O2 consumption (V̇o2), and exercise capacity. Despite maximal systemic O2 transport being reduced 19% due to hemodilution after PV expansion, whole body V̇o2 was maintained by greater systemic O2 extraction ( P < 0.05). Leg blood flow was elevated ( P < 0.05) in hypervolemic conditions, which compensated for hemodilution resulting in similar leg O2 delivery and leg V̇o2 during exercise regardless of PV. Pulmonary ventilation, gas exchange, and acid-base balance were essentially unaffected by PV expansion. Sea level Q̇max and exercise capacity were restored with hyperoxia at altitude independently of BV. Low BV is not a primary cause for reduction of Q̇max at altitude when acclimatized. Furthermore, hemodilution caused by PV expansion at altitude is compensated for by increased systemic O2 extraction with similar peak muscular O2 delivery, such that maximal exercise capacity is unaffected.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献