Endothelin-1-mediated vasoconstriction at rest and during dynamic exercise in healthy humans

Author:

Wray D. Walter,Nishiyama Steven K.,Donato Anthony J.,Sander Mikael,Wagner Peter D.,Richardson Russell S.

Abstract

It is now generally accepted that α-adrenoreceptor-mediated vasoconstriction is attenuated during exercise, but the efficacy of nonadrenergic vasoconstrictor pathways during exercise remains unclear. Thus, in eight young (23 ± 1 yr), healthy volunteers, we contrasted changes in leg blood flow (ultrasound Doppler) before and during intra-arterial infusion of the α1-adrenoreceptor agonist phenylephrine (PE) with that of the nonadrenergic endothelin A (ETA)/ETBreceptor agonist ET-1. Heart rate, arterial blood pressure, common femoral artery diameter, and mean blood velocity were measured at rest and during knee-extensor exercise at 20%, 40%, and 60% of maximal work rate (WRmax). Drug infusion rates were adjusted for blood flow to maintain comparable doses across all subjects and conditions. At rest, PE infusion (8 ng·ml−1·min−1) provoked a rapid and significant decrease in leg blood flow (−51 ± 3%) within 2.5 min. Resting ET-1 infusion (40 pg·ml−1·min−1) significantly decreased leg blood flow within 5 min, reaching a maximal vasoconstriction (−34 ± 3%) after 25–30 min of continuous infusion. Compared with rest, an exercise intensity-dependent attenuation to PE-mediated vasoconstriction was observed (−18 ± 5%, −7 ± 2%, and −1 ± 3% change in leg blood flow at 20%, 40%, and 60% of WRmax, respectively). Vasoconstriction in response to ET-1 was also blunted in an exercise intensity-dependent manner (−13 ± 3%, −7 ± 4%, and 2 ± 3% change in leg blood flow at 20%, 40%, and 60% of WRmax, respectively). These findings support a significant contribution of ET-1 and α-adrenergic receptors in the regulation of skeletal muscle blood flow in the human leg at rest and suggest a similar, intensity-dependent “lysis” of peripheral ET and α-adrenergic vasoconstriction during dynamic exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3