Reduced exercise capacity occurs before intrinsic skeletal muscle dysfunction in experimental rat models of pulmonary hypertension

Author:

Zhang Peng12,Da Silva Goncalves Bos Denielli123,Vang Alexander1,Feord Julia1,McCullough Danielle J.4,Zimmer Alexsandra12,D'Silva Natalie12,Clements Richard T.15,Choudhary Gaurav12ORCID

Affiliation:

1. Vascular Research Laboratory Providence VA Medical Center Providence Rhode Island USA

2. Division of Cardiology, Department of Medicine Alpert Medical School of Brown University Providence Rhode Island USA

3. Pulmonary Division, Heart Institute University of São Paulo Medical School São Paulo Brazil

4. Medical Education Edward Via College of Osteopathic Medicine Auburn Alabama USA

5. Biomedical and Pharmaceutical Sciences University of Rhode Island Kingston Rhode Island USA

Abstract

AbstractReduced exercise capacity in pulmonary hypertension (PH) significantly impacts quality of life. However, the cause of reduced exercise capacity in PH remains unclear. The objective of this study was to investigate whether intrinsic skeletal muscle changes are causative in reduced exercise capacity in PH using preclinical PH rat models with different PH severity. PH was induced in adult Sprague–Dawley (SD) or Fischer (CDF) rats with one dose of SU5416 (20 mg/kg) injection, followed by 3 weeks of hypoxia and additional 0–4 weeks of normoxia exposure. Control rats were injected with vehicle and housed in normoxia. Echocardiography was performed to assess cardiac function. Exercise capacity was assessed by VO2 max. Skeletal muscle structural changes (atrophy, fiber type switching, and capillary density), mitochondrial function, isometric force, and fatigue profile were assessed. In SD rats, right ventricular systolic dysfunction is associated with reduced exercise capacity in PH rats at 7‐week timepoint in comparison to control rats, while no changes were observed in skeletal muscle structure, mitochondrial function, isometric force, or fatigue profile. CDF rats at 4‐week timepoint developed a more severe PH and, in addition to right ventricular dysfunction, the reduced exercise capacity in these rats is associated with skeletal muscle atrophy; however, mitochondrial function, isometric force, and fatigue profile in skeletal muscle remain unchanged. Our data suggest that cardiopulmonary impairments in PH are the primary cause of reduced exercise capacity, which occurs before intrinsic skeletal muscle dysfunction.

Funder

U.S. Department of Veterans Affairs

National Heart, Lung, and Blood Institute

National Institute of General Medical Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3