Affiliation:
1. Second Department of Internal Medicine, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan
Abstract
We tested the hypothesis that vessel homeostasis is maintained through the cross talk of shear-induced production of prostacyclin and nitric oxide (NO). Confluent human umbilical vein endothelial cells (HUVEC) were exposed to fluid shear stress at 15 dyn/cm2using a cone-plate device, and the concentrations of 6-keto-PGF1αand NO metabolites (nitrate and nitrite) in the medium were measured with radioimmunoassay and the Greiss method, respectively. Compared with static control, shear stress increased cumulative prostacyclin production by twofold after 90 min of exposure. Inhibition of NO synthase enhanced flow-induced prostacyclin production by twofold without affecting the baseline production. Guanylyl cyclase inhibitor enhanced flow-induced prostacyclin production to the same degree. In contrast, a stable agonist of cGMP attenuated the rapid early phase of flow-dependent prostacyclin production. Shear-induced NO metabolite production was unaffected even after indomethacin inhibited prostacyclin production. We conclude that NO shows an inhibitory effect on prostacyclin production under shear stress and that vessel homeostasis may be maintained through an increase in prostacyclin production when NO synthesis is impaired in endothelial cells.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献