Mechanisms of rapid vasodilation after a brief contraction in human skeletal muscle

Author:

Crecelius Anne R.1,Kirby Brett S.2,Luckasen Gary J.3,Larson Dennis G.3,Dinenno Frank A.14

Affiliation:

1. Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado;

2. Department of Medicine, Division of Hematology and Division of Pulmonary, Allergy, Critical Care Medicine, Duke University Medical Center, Durham, North Carolina; and

3. Medical Center of the Rockies Foundation, University of Colorado Health, Loveland, Colorado

4. Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado;

Abstract

A monophasic increase in skeletal muscle blood flow is observed after a brief single forearm contraction in humans, yet the underlying vascular signaling pathways remain largely undetermined. Evidence from experimental animals indicates an obligatory role of vasodilation via K+-mediated smooth muscle hyperpolarization, and human data suggest little to no independent role for nitric oxide (NO) or vasodilating prostaglandins (PGs). We tested the hypothesis that K+-mediated vascular hyperpolarization underlies the rapid vasodilation in humans and that combined inhibition of NO and PGs would have a minimal effect on this response. We measured forearm blood flow (Doppler ultrasound) and calculated vascular conductance 10 s before and for 30 s after a single 1-s dynamic forearm contraction at 10%, 20%, and 40% maximum voluntary contraction in 16 young adults. To inhibit K+-mediated vasodilation, BaCl2 and ouabain were infused intra-arterially to inhibit inwardly rectifying K+ channels and Na+-K+-ATPase, respectively. Combined enzymatic inhibition of NO and PG synthesis occurred via NG-monomethyl-l-arginine (l-NMMA; NO synthase) and ketorolac (cyclooxygenase), respectively. In protocol 1 ( n = 8), BaCl2 + ouabain reduced peak vasodilation (range: 30–45%, P < 0.05) and total postcontraction vasodilation (area under the curve, ∼55–75% from control) at all intensities. Contrary to our hypothesis, l-NMMA + ketorolac had a further impact (peak: ∼60% and area under the curve: ∼80% from control). In protocol 2 ( n = 8), the order of inhibitors was reversed, and the findings were remarkably similar. We conclude that K+-mediated hyperpolarization and NO and PGs, in combination, significantly contribute to contraction-induced rapid vasodilation and that inhibition of these signaling pathways nearly abolishes this phenomenon in humans.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3