Myocardial ATP hydrolysis rates in vivo: a porcine model of pressure overload-induced hypertrophy

Author:

Xiong Qiang1,Zhang Pengyuan1,Guo Jing1,Swingen Cory1,Jang Albert1,Zhang Jianyi1

Affiliation:

1. Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota

Abstract

Left ventricular (LV) hypertrophy (LVH) and congestive heart failure are accompanied by changes in myocardial ATP metabolism. However, the rate of ATP hydrolysis cannot be measured in the in vivo heart with the conventional techniques. Here, we used a double-saturation phosphorous-31 magnetic resonance spectroscopy-magnetization saturation transfer protocol to monitor ATP hydrolysis rate in swine hearts as the hearts became hypertrophic in response to aortic banding (AOB). Animals that underwent AOB ( n = 22) were compared with animals that underwent sham surgery ( n = 8). AOB induced severe LVH (cardiac MRI). LV function (ejection fraction and systolic thickening fraction) declined significantly, accompanied by deferent levels of pericardial effusion, and wall stress increased in aorta banded animals at week 1 after AOB, suggesting acute heart failure, which recovered by week 8 when concentric LVH restored LV wall stresses. Severe LV dysfunction was accompanied by corresponding declines in myocardial bioenergetics (phosphocreatine-to-ATP ratio) and in the rate of ATP production via creatine kinase at week 1. For the first time, the same linear relationships of the rate increase of the constants of the ATP hydrolysis rate ( kATP→Pi) vs. the LV rate-pressure product increase during catecholamine stimulation were observed in vivo in both normal and LVH hearts. Collectively, these observations demonstrate that the double-saturation, phosphorous-31 magnetic resonance spectroscopy-magnetization saturation transfer protocol can accurately monitor myocardial ATP hydrolysis rate in the hearts of living animals. The severe reduction of LV chamber function during the acute phase of AOB is accompanied by the decrease of myocardial bioenergetic efficiency, which recovers as the compensated LVH restores the LV wall stresses.

Funder

NIH

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3