Evaluation of large animal models for preclinical studies of heart failure with preserved ejection fraction using clinical score systems

Author:

Li Ke,Cardoso Cristiano,Moctezuma-Ramirez Angel,Elgalad Abdelmotagaly,Perin Emerson

Abstract

Heart failure with preserved ejection fraction (HFpEF) is characterized by a complex, heterogeneous spectrum of pathologic features combined with average left ventricular volume and diastolic dysfunction. HFpEF is a significant public health problem associated with high morbidity and mortality rates. Currently, effective treatments for HFpEF represent the greatest unmet need in cardiovascular medicine. A lack of an efficient preclinical model has hampered the development of new devices and medications for HFpEF. Because large animal models have similar physiologic traits as humans and appropriate organ sizes, they are the best option for limiting practical constraints. HFpEF is a highly integrated, multiorgan, systemic disorder requiring a multipronged investigative approach. Here, we review the large animal models of HFpEF reported to date and describe the methods that have been used to create HFpEF, including surgery-induced pressure overloading, medicine-induced pressure overloading, and diet-induced metabolic syndrome. In addition, for the first time to our knowledge, we use two established clinical HFpEF algorithms (HFA-PEFF and H2FPEF scores) to evaluate the currently available large animal models. We also discuss new technologies, such as continuous remote pressure monitors and inflatable aortic cuffs, as well as how the models could be improved. Based on current progress and our own experience, we believe an efficient large animal model of HFpEF should simultaneously encompass multiple pathophysiologic factors, along with multiorgan dysfunction. This could be fully evaluated through available methods (imaging, blood work). Although many models have been studied, only a few studies completely meet clinical score standards. Therefore, it is critical to address the deficiencies of each model and incorporate novel techniques to establish a more reliable model, which will help facilitate the understanding of HFpEF mechanisms and the development of a treatment.

Publisher

Frontiers Media SA

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3