Increases in CSF [Na+] precede the increases in blood pressure in Dahl S rats and SHR on a high-salt diet

Author:

Huang Bing S.,Van Vliet Bruce N.,Leenen Frans H. H.

Abstract

In Dahl salt-sensitive (S) and salt-resistant (R) rats, and spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats, at 5–6 wk of age, a cannula was placed in the cisterna magna, and cerebrospinal fluid (CSF) was withdrawn continuously at 75 μl/12 h. CSF was collected as day- and nighttime samples from rats on a regular salt intake (0.6% Na+; R-Na) and then on a high salt intake (8% Na+; H-Na). In separate groups of rats, the abdominal aorta was cannulated and blood pressure (BP) and heart rate (HR) measured at 10 AM and 10 PM, with rats first on R-Na and then on H-Na. On H-Na, CSF [Na+] started to increase in the daytime of day 2 in Dahl S rats and of day 3 in SHR. BP and HR did not rise until day 3 in Dahl S rats and day 4 in SHR. In Dahl R and WKY rats, high salt did not change CSF [Na+], BP, or HR. In a third set of Dahl S rats, sampling of both CSF and BP was performed in each individual rat. Again, significant increases in CSF [Na+] were observed 1–2 days earlier than the increases in BP and HR. In a fourth set of Dahl S rats, BP and HR were recorded continuously by means of radiotelemetry for 5 days on R-Na and 8 days on H-Na. On H-Na, BP (but not HR) increased first in the nighttime of day 2. In another set of Dahl S rats, intracerebroventricular infusion of antibody Fab fragments binding ouabain-like compounds (OLC) with high affinity prevented the increase in BP and HR by H-Na but further increased CSF [Na+]. Finally, in Wistar rats on H-Na, intracerebroventricular infusion of ouabain increased BP and HR but decreased CSF [Na+]. Thus, in both Dahl S and SHR on H-Na, increases in CSF [Na+] preceded the increases in BP and HR, consistent with a primary role of increased CSF [Na+] in the salt-induced hypertension. An increase in brain OLC in response to the initial increase in CSF [Na+] appears to attenuate further increases in CSF [Na+] but at the “expense” of sympathoexcitation and hypertension.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3