TRPV1 signaling of perirenal adipose tissue promotes DOCA-Salt-induced hypertension and kidney injury

Author:

Hua Dongxu1,Huang Wanlin2,Huang Wen2,Xie Qiyang1,Tang Lu2,Wu Xiaoguang1,Gao Min1,Xu Tianhua1,Zhang Yue1,Li Peng13,Sun Wei13,Kong Xiangqing132

Affiliation:

1. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing

2. Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, P.R. China

3. Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine

Abstract

Background: Denervation of renal or perirenal adipose tissue (PRAT) can reduce arterial blood pressure in various hypertensive experimental models. Trpv1 (transient receptor potential vanillin 1) channel is highly expressed in the renal sensory nerves and the dorsal root ganglias (DRGs) projected by PRAT. However, it is currently unclear whether Trpv1 in DRGs projected from PRAT can regulate renal hypertension. Methods: We used resintoxin (RTX) to block the afferent sensory nerves of rat PRAT. We also constructed Trpv1-/- mice and Trpv1+/- mice or used the injection of AAV2-retro-shTrpv1 to detect the effects of Trpv1 knockout or knockdown of PRAT-projected DRGs on deoxycorticosterone acetate (DOCA)-Salt-induced hypertension and kidney injury. Results: Blocking the afferent sensory nerves of PRAT with RTX can alleviate DOCA-Salt-induced hypertension and renal injury in rats. And this blockade reduces the expression of Trpv1 in the DRGs projected by PRAT. Injecting AAV2-retro-shTrpv1 into the PRAT of DOCA-Salt mice also achieved the same therapeutic effect. However, DOCA-Salt-induced hypertension and renal injury can be treated in Trpv1+/- mice but not alleviated or even worsened in Trpv1-/- mice, possibly because of compensatory increase of Trpv5 in DRG of Trpv1-/- mice. Conclusion: Reducing, rather than eliminating, Trpv1 in DRG from PRAT-projection can reduce blood pressure and kidney damage in DOCA-Salt in rats or mice. Trpv1 in PRAT-DRGs may serve as a therapeutic target for salt-sensitive hypertension and its renal complications.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3