Blood—Brain Barrier Permeability and Brain Concentration of Sodium, Potassium, and Chloride during Focal Ischemia

Author:

Betz A. Lorris1,Keep Richard F.2,Beer Mary E.2,Ren Xiao-Dan2

Affiliation:

1. Departments of Pediatrics and Neurology, University of Michigan, Ann Arbor, Michigan, U.S.A.

2. Departments of Surgery (Neurosurgery), University of Michigan, Ann Arbor, Michigan, U.S.A.

Abstract

Brain edema formation during the early stages of focal cerebral ischemia is associated with an increase in both sodium content and blood–brain barrier (BBB) sodium transport. The goals of this study were to determine whether chloride is the principal anion that accumulates in ischemic brain, how the rate of BBB transport of chloride compares with its rate of accumulation, and whether the stimulation seen in BBB sodium transport is also seen with other cations. Focal ischemia was produced by occlusion of the middle cerebral artery (MCAO) in anesthetized rats. Over the first 6 h after MCAO, the amount of brain water in the center of the ischemic cortex increased progressively at a rate of 0.15 ± 0.02 (SE) g/g dry wt/h. This was accompanied by a net increase in brain sodium (48 ± 12 μmol/g dry wt/h) and a loss of potassium (34 ± 7 μmol/g dry wt/h). The net rate of chloride accumulation (16 ± 1 μmol/g dry wt/h) approximated the net rate of increase of cations. Three hours after MCAO, the BBB permeability to three ions (22Na,36Cl, and86Rb) and two passive permeability tracers {[3H]α-aminoisobutyric acid (3H]AIB) and [14C]urea} was determined. Permeability to either passive tracer was not increased, indicating that the BBB was intact. The rate of36Cl influx was 3 times greater and the rate of22Na influx 1.8 times greater than their respective net rates of accumulation in ischemic brain. The BBB permeability to22Na relative to that of [3H]AIB was significantly increased in the ischemic cortex, the relative permeability to86Rb was significantly decreased, and the relative permeability to36Cl was unchanged. These results indicate that the stimulation in BBB sodium transport is specific for sodium. Further, chloride accumulates with sodium in brain during the early stages of ischemia; however, its rate of accumulation is low compared with its rate of transport from blood to brain. Therefore, inhibition of BBB sodium transport is more likely to reduce edema formation than is inhibition of BBB chloride transport.This study demonstrates that chloride is the principal anion that accompanies the accumulation of sodium in ischemic brain, but its rate of accumulation in brain is much less than its rate of movement into brain, and therefore inhibition of chloride uptake would have little effect on brain edema formation. There is a specific acceleration of blood-to-brain sodium transport during ischemia that is not seen with another positively charged ion,86Rb. This is consistent with stimulation of brain capillary Na,K-ATPase activity in response to the elevated extracellular potassium concentration. Inhibition of potassium influx across the BBB would probably be more successful in lessening edema formation than accelerating potassium efflux. However, inhibition of blood-to-brain sodium transport is likely to be a more effective approach to reducing brain edema formation during the early stages of cerebral ischemia.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3