Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies

Author:

Papadaki M.1,Bursac N.12,Langer R.13,Merok J.4,Vunjak-Novakovic G.1,Freed L. E.1

Affiliation:

1. Division of Health Sciences and Technology and Departments of

2. Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215

3. Chemical Engineering and

4. Biology, Massachusetts Institute of Technology, Cambridge 02139; and

Abstract

The primary aim of this study was to relate molecular and structural properties of in vitro reconstructed cardiac muscle with its electrophysiological function using an in vitro model system based on neonatal rat cardiac myocytes, three-dimensional polymeric scaffolds, and bioreactors. After 1 wk of cultivation, we found that engineered cardiac muscle contained a 120- to 160-μm-thick peripheral region with cardiac myocytes that were electrically connected through gap junctions and sustained macroscopically continuous impulse propagation over a distance of 5 mm. Molecular, structural, and electrophysiological properties were found to be interrelated and depended on specific model system parameters such as the tissue culture substrate, bioreactor, and culture medium. Native tissue and the best experimental group (engineered cardiac muscle cultivated using laminin-coated scaffolds, rotating bioreactors, and low-serum medium) were comparable with respect to the conduction velocity of propagated electrical impulses and spatial distribution of connexin43. Furthermore, the structural and electrophysiological properties of the engineered cardiac muscle, such as cellularity, conduction velocity, maximum signal amplitude, capture rate, and excitation threshold, were significantly improved compared with our previous studies.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3