Affiliation:
1. Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
Abstract
Cardiac tissue engineering is a promising strategy for the treatment of myocardial damage. Mesenchymal stem cells (MSCs) are extensively used in tissue engineering. However, transformation of MSCs into cardiac myocytes is still a challenge. Furthermore, weak adhesion of MSCs to substrates often results in poor cell viability. Here, we designed a composite matrix based on silk fibroin (SF) and graphene oxide (GO) for improving the cell adhesion and directing the differentiation of MSCs into cardiac myocytes. Specifically, patterned SF films were first produced by soft lithographic. After being treated by air plasma, GO nanosheets could be successfully coated on the patterned SF films to construct the desired matrix (P-GSF). The resultant P-GSF films presented a nano-topographic surface characterized by linear grooves interlaced with GO ridges. The P-GSF films exhibited high protein absorption and suitable mechanical strength. Furthermore, the P-GSF films accelerated the early cell adhesion and directed the growth orientation of MSCs. RT-PCR results and immunofluorescence imaging demonstrated that the P-GSF films significantly improved the cardiomyogenic differentiation of MSCs. This work indicates that patterned SF films coated with GO are promising matrix in the field of myocardial repair tissue engineering.
Subject
Molecular Biology,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献