Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies

Author:

Bursac N.12,Papadaki M.1,Cohen R. J.1,Schoen F. J.3,Eisenberg S. R.2,Carrier R.1,Vunjak-Novakovic G.1,Freed L. E.1

Affiliation:

1. Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139;

2. Department of Biomedical Engineering, Boston University, Boston 02215; and

3. Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02115

Abstract

The objective of this study was to establish a three-dimensional (3-D) in vitro model system of cardiac muscle for electrophysiological studies. Primary neonatal rat ventricular cells containing lower or higher fractions of cardiac myocytes were cultured on polymeric scaffolds in bioreactors to form regular or enriched cardiac muscle constructs, respectively. After 1 wk, all constructs contained a peripheral tissue-like region (50–70 μm thick) in which differentiated cardiac myocytes were organized in multiple layers in a 3-D configuration. Indexes of cell size (protein/DNA) and metabolic activity (tetrazolium conversion/DNA) were similar for constructs and neonatal rat ventricles. Electrophysiological studies conducted using a linear array of extracellular electrodes showed that the peripheral region of constructs exhibited relatively homogeneous electrical properties and sustained macroscopically continuous impulse propagation on a centimeter-size scale. Electrophysiological properties of enriched constructs were superior to those of regular constructs but inferior to those of native ventricles. These results demonstrate that 3-D cardiac muscle constructs can be engineered with cardiac-specific structural and electrophysiological properties and used for in vitro impulse propagation studies.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 286 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3