Conductance catheter-based assessment of arterial input impedance, arterial function, and ventricular-vascular interaction in mice

Author:

Segers Patrick,Georgakopoulos Dimitrios,Afanasyeva Marina,Champion Hunter C.,Judge Daniel P.,Millar Huntly D.,Verdonck Pascal,Kass David A.,Stergiopulos Nikos,Westerhof Nico

Abstract

Global assessment of both cardiac and arterial function is important for a meaningful interpretation of pathophysiological changes in animal models of cardiovascular disease. We simultaneously acquired left ventricular (LV) and aortic pressure and LV volume (VLV) in 17 open-chest anesthetized mice (26.7 ± 3.2g) during steady-state (BL) and caval vein occlusion (VCO) using a 1.4-Fr dual-pressure conductance catheter and in a subgroup of eight animals during aortic occlusion (AOO). Aortic flow was obtained from numerical differentiation of VLV. AOO increased input impedance ( Zin) for the first two harmonics, increased characteristic impedance (0.025 ± 0.007 to 0.040 ± 0.011 mmHg·μl−1·s, P < 0.05), and shifted the minimum in Zin from the third to the sixth harmonic. For all conditions, the Zin could be well represented by a four-element windkessel model. The augmentation index increased from 116.7 ± 7.8% to 145.9 ± 19.5% ( P < 0.01) as well as estimated pulse-wave velocity (3.50 ± 0.94 to 5.95 ± 1.62 m/s, P < 0.05) and arterial elastance ( Ea, 4.46 ± 1.62 to 6.02 ± 1.43 mmHg/μl, P < 0.01). AOO altered the maximal slope ( Emax, 3.23 ± 1.02 to 5.53 ± 1.53 mmHg/μl, P < 0.05) and intercept (−19.9 ± 8.6 to 1.62 ± 13.51 μl, P < 0.01) of the end-systolic pressure-volume relation but not Ea/ Emax (1.44 ± 0.43 to 1.21 ± 0.37, not significant). We conclude that simultaneous acquisition of Zin and arterial function parameters in the mouse, based solely on conductance catheter measurements, is feasible. We obtained an anticipated response of Zin and arterial function parameters following VCO and AOO, demonstrating the sensitivity of the measuring technique to induced physiological alterations in murine hemodynamics.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3