Left ventricular volume measurement in mice by conductance catheter: evaluation and optimization of calibration

Author:

Nielsen Jan Møller,Kristiansen Steen B.,Ringgaard Steffen,Nielsen Torsten Toftegaard,Flyvbjerg Allan,Redington Andrew N.,Bøtker Hans Erik

Abstract

The conductance catheter (CC) allows thorough evaluation of cardiac function because it simultaneously provides measurements of pressure and volume. Calibration of the volume signal remains challenging. With different calibration techniques, in vivo left ventricular volumes (VCC) were measured in mice ( n = 52) with a Millar CC (SPR-839) and compared with MRI-derived volumes (VMRI). Significant correlations between VCC and VMRI [end-diastolic volume (EDV): R2 = 0.85, P < 0.01; end-systolic volume (ESV): R2 = 0.88, P < 0.01] were found when injection of hypertonic saline in the pulmonary artery was used to calibrate for parallel conductance and volume conversion was done by individual cylinder calibration. However, a significant underestimation was observed [EDV = −17.3 μl (−22.7 to −11.9 μl); ESV = −8.8 μl (−12.5 to −5.1 μl)]. Intravenous injection of the hypertonic saline bolus was inferior to injection into the pulmonary artery as a calibration method. Calibration with an independent measurement of stroke volume decreased the agreement with VMRI. Correction for an increase in blood conductivity during the in vivo experiments improved estimation of EDV. The dual-frequency method for estimation of parallel conductance failed to produce VCC that correlated with VMRI. We conclude that selection of the calibration procedure for the CC has significant implications for the accuracy and precision of volume estimation and pressure-volume loop-derived variables like myocardial contractility. Although VCC may be underestimated compared with MRI, optimized calibration techniques enable reliable volume estimation with the CC in mice.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3