Author:
Nielsen Jan Møller,Kristiansen Steen B.,Ringgaard Steffen,Nielsen Torsten Toftegaard,Flyvbjerg Allan,Redington Andrew N.,Bøtker Hans Erik
Abstract
The conductance catheter (CC) allows thorough evaluation of cardiac function because it simultaneously provides measurements of pressure and volume. Calibration of the volume signal remains challenging. With different calibration techniques, in vivo left ventricular volumes (VCC) were measured in mice ( n = 52) with a Millar CC (SPR-839) and compared with MRI-derived volumes (VMRI). Significant correlations between VCC and VMRI [end-diastolic volume (EDV): R2 = 0.85, P < 0.01; end-systolic volume (ESV): R2 = 0.88, P < 0.01] were found when injection of hypertonic saline in the pulmonary artery was used to calibrate for parallel conductance and volume conversion was done by individual cylinder calibration. However, a significant underestimation was observed [EDV = −17.3 μl (−22.7 to −11.9 μl); ESV = −8.8 μl (−12.5 to −5.1 μl)]. Intravenous injection of the hypertonic saline bolus was inferior to injection into the pulmonary artery as a calibration method. Calibration with an independent measurement of stroke volume decreased the agreement with VMRI. Correction for an increase in blood conductivity during the in vivo experiments improved estimation of EDV. The dual-frequency method for estimation of parallel conductance failed to produce VCC that correlated with VMRI. We conclude that selection of the calibration procedure for the CC has significant implications for the accuracy and precision of volume estimation and pressure-volume loop-derived variables like myocardial contractility. Although VCC may be underestimated compared with MRI, optimized calibration techniques enable reliable volume estimation with the CC in mice.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献