Non-invasive pressure–volume loops using the elastance model and CMR: a porcine validation at transient pre-loads

Author:

Seemann Felicia1ORCID,Heiberg Einar2ORCID,Bruce Christopher G1,Khan Jaffar M1,Potersnak Amanda1,Ramasawmy Rajiv1,Carlsson Marcus1,Arheden Håkan2ORCID,Lederman Robert J1,Campbell-Washburn Adrienne E1

Affiliation:

1. Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health , 10 Center Drive, Building 10 Rm B1D219, Bethesda, MD 20892 , USA

2. Department of Clinical Sciences Lund, Clinical Physiology, Skane University Hospital, Lund University , Entrégatan 7, 221 85 Lund , Sweden

Abstract

Abstract Aims Pressure–volume (PV) loops have utility in the evaluation of cardiac pathophysiology but require invasive measurements. Recently, a time-varying elastance model to derive PV loops non-invasively was proposed, using left ventricular (LV) volume by cardiovascular magnetic resonance (CMR) and brachial cuff pressure as inputs. Validation was performed using CMR and pressure measurements acquired on the same day, but not simultaneously, and without varying pre-loads. This study validates the non-invasive elastance model used to estimate PV loops at varying pre-loads, compared with simultaneous measurements of invasive pressure and volume from real-time CMR, acquired concurrent to an inferior vena cava (IVC) occlusion. Methods and results We performed dynamic PV loop experiments under CMR guidance in 15 pigs (n = 7 naïve, n = 8 with ischaemic cardiomyopathy). Pre-load was altered by IVC occlusion, while simultaneously acquiring invasive LV pressures and volumes from real-time CMR. Pairing pressure and volume signals yielded invasive PV loops, and model-based PV loops were derived using real-time LV volumes. Haemodynamic parameters derived from invasive and model-based PV loops were compared. Across 15 pigs, 297 PV loops were recorded. Intra-class correlation coefficient (ICC) agreement was excellent between model-based and invasive parameters: stroke work (bias = 0.007 ± 0.03 J, ICC = 0.98), potential energy (bias = 0.02 ± 0.03 J, ICC = 0.99), ventricular energy efficiency (bias = −0.7 ± 2.7%, ICC = 0.98), contractility (bias = 0.04 ± 0.1 mmHg/mL, ICC = 0.97), and ventriculoarterial coupling (bias = 0.07 ± 0.15, ICC = 0.99). All haemodynamic parameters differed between naïve and cardiomyopathy animals (P < 0.05). The invasive vs. model-based PV loop dice similarity coefficient was 0.88 ± 0.04. Conclusion An elastance model–based estimation of PV loops and associated haemodynamic parameters provided accurate measurements at transient loading conditions compared with invasive PV loops.

Funder

Intramural Research Program

National Heart Lung and Blood Institute

National Institutes of Health

Swedish Society for Medical Research

Swedish Heart Lung Foundation

Foundation Blanceflor

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3