Nitric oxide synthase-inhibition hypertension is associated with altered endothelial cyclooxygenase function

Author:

Bratz Ian N.,Kanagy Nancy L.

Abstract

We reported previously that endothelium-intact superior mesenteric arteries (SMA) from Nω-nitro-l-arginine (l-NNA)-treated hypertensive rats (LHR) contract more to norepinephrine (NE) than SMA from control rats. Others have shown that nitric oxide (NO) synthase (NOS) inhibition increases cyclooxygenase (COX) function and expression. We hypothesized that augmented vascular sensitivity to NE in LHR arteries is caused by decreased NOS-induced dilation and increased COX product-induced constriction. We observed that the EC50 for NE is lower in LHR SMA compared with control SMA (control −6.37 ± 0.04, LHR −7.89 ± 0.09 log mol/l; P < 0.05). Endothelium removal lowered the EC50 (control −7.95 ± 0.11, LHR −8.44 ± 0.13 log mol/l; P < 0.05) and increased maximum tension in control (control 1,036 ± 38 vs. 893 ± 21 mg; P < 0.05) but not LHR (928 ± 30 vs. 1,066 ± 31 mg) SMA. Thus augmented NE sensitivity in LHR SMA depends largely on decreased endothelial dilation. NOS inhibition (l-NNA, 10−4 mol/l) increased maximum tension and EC50 in control arteries but not in LHR arteries. In contrast, COX inhibition decreased maximum tension in control arteries, suggesting that COX products augment contraction. Indomethacin did not affect NE-induced contraction in l-NNA-treated or denuded arteries. In control SMA loaded with the fluorescent NO indicator 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate, indomethacin increased and l-NNA decreased NO release. Therefore, COX products appear to inhibit NO production to augment NE-induced contraction. With chronic NOS inhibition, this modulating influence is greatly diminished. Thus, in NOS-inhibition hypertension, decreased activity of both COX and NOS pathways profoundly disrupts endothelial modulation of contraction.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3