Endothelial Dysfunction Coincides With an Enhanced Nitric Oxide Synthase Expression and Superoxide Anion Production

Author:

Bouloumié Anne1,Bauersachs Johann1,Linz Wolfgang1,Schölkens Bernward A.1,Wiemer Gabriele1,Fleming Ingrid1,Busse Rudi1

Affiliation:

1. From the Zentrum der Physiologie, Klinikum der J.W. Goethe-Universität (A.B., J.B., I.F., R.B.), and PGU Cardiovascular Agents, Hoechst Marion Roussel (W.L., B.A.S., G.W.), Frankfurt/Main, Germany.

Abstract

Abstract We investigated the effects of aortic banding–induced hypertension on the endothelium-dependent vasodilator responses in the aorta and coronary circulation of Sprague-Dawley rats. We studied the influence of hypertension on the endothelial nitric oxide synthase (NOS III) expression, assessed by Western blot and reverse transcription–polymerase chain reactions experiments, and on the superoxide anion (O 2 ) production. Two weeks after aortic banding, the endothelium-dependent relaxations were not altered. At this time, the expression of NOS III in the aorta and in confluent coronary microvascular endothelial cells (RCMECs) exhibited no marked changes, whereas O 2 production was enhanced 1.9-fold in aortas from aortic-banded rats. Six weeks after aortic banding, the endothelium-dependent dilations were markedly impaired in the heart (50% decrease) and aorta (35% decrease). Analysis of NOS III protein and mRNA levels revealed marked increases in both aortas and confluent RCMECs (2.6- to 4-fold) from aortic-banded compared with sham-operated rats. There was no further increase in O 2 production in both the aorta and confluent RCMECs from aortic-banded rats. An enhanced nitrotyrosine protein level was also detected in the aorta from 6-week aortic-banded rats. These findings indicate that in hypertension induced by aortic banding, an enhanced O 2 production alone is not sufficient to produce endothelial dysfunction. Endothelial vasodilator hyporesponsiveness was observed only when NOS III expression and O 2 production were increased and was associated with the appearance of enhanced nitrotyrosine residues. This would suggest that the development of endothelial dysfunction is linked to an overproduction of not one, but two, endothelium-derived radicals that might lead to the formation of peroxynitrite.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3