Ventricular fibrillation in myopathic human hearts: mechanistic insights from in vivo global endocardial and epicardial mapping

Author:

Massé Stéphane,Downar Eugene,Chauhan Vijay,Sevaptsidis Elias,Nanthakumar Kumaraswamy

Abstract

Ventricular fibrillation (VF) is an important cause of sudden cardiac death and cardiovascular mortality in patients with cardiomyopathy. Although it was generally believed that chaotic reentrant wavefronts underlie VF in humans, there is emerging evidence of spatiotemporal organization during early VF. The mechanism of this organization of electrical activity in early VF is unknown in myopathic hearts. We studied early VF in vivo, intraoperatively in five cardiomyopathic patients. Simultaneous electrograms were obtained from the epicardium and endocardium in left ventricular cardiomyopathy and from the endocardium in right ventricular myopathy. The Hilbert transform was used to derive the phase of the electrograms. Rotors were identified by isolating phase singularity points. Rotors were present in all of the myopathic hearts studied during VF and cumulatively lasted a mean of 3.2 ± 2.0 s of the 7.0 ± 4.0 s of the VF segments analyzed. For each surface mapped, 3.6 ± 2.9 rotors were identified for the duration mapped. The average number of cycles completed by these rotors was 4.9 ± 4.9. The longest rotor lasted 10.2 ± 6.2 rotations and lasted 2.0 ± 1.2 s. The rotors on the endocardium had a cycle length of 192 ± 33 ms compared with 220 ± 15 ms on the epicardium ( P = 0.08). There is centrifugal activation of electrical activity from these rotors, and they give rise to domains that activate at faster rates with evidence of conduction block at the border with slower domains. These rotors frequently localized to border regions of myocardium with bipolar electrogram amplitude of <0.5 mV. The organization of electrical activity during early VF in myopathic human hearts is characterized by wavefronts emanating from a few rotors.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3