Purkinje-Muscle Reentry as a Mechanism of Polymorphic Ventricular Arrhythmias in a 3-Dimensional Model of the Ventricles

Author:

Berenfeld Omer1,Jalife José1

Affiliation:

1. From the Department of Pharmacology, SUNY Health Science Center at Syracuse, Syracuse, NY.

Abstract

Abstract —Multiple electrode mapping of the ventricles during complex tachyarrhythmias has revealed focal subendocardial activation whose mechanism remains unexplained. We hypothesized that reentry involving the Purkinje-muscle junctions (PMJs) may be a mechanism for such focal excitations. We have constructed an anatomically appropriate computerized 3-dimensional model of the mammalian ventricles that includes the Purkinje conduction system and 214 PMJs distributed throughout the endocardium. Isochronal maps during normal excitation, as well as during right or left bundle branch block, resembled experimental measurements and compared well with isochronal maps of propagation in the human heart. Activity observed at both sides of a PMJ in the model showed that propagation from Purkinje fibers to muscle was slower than in the opposite direction. Under these realistic and normal conditions, the evolution of reentrant activity involving muscle and the Purkinje network was simulated. The reentry pattern was independent of the initiation site. It evolved with drifting epicardial breakthroughs and transformed on the endocardium from focal activity to figure-of-8 reentry. In addition, the ECG amplitude undulated during the evolution, and decrease in the cycle period, apparent wavelength, and propagation velocity were observed. Finally, the reentry was terminated if the Purkinje system was disconnected from the muscle before it reached a relative steady state. The simulation results suggest the following: (1) Epicardial breakthroughs and endocardial focal activity may originate at the PMJs. (2) The ECG amplitude may decrease as the reentry stabilizes and the excitation wavelength decreases. (3) The Purkinje system may have a double role in the evolution of reentry: first, it is essential to the reentry at the initial stage; second, it may lead to the establishment of intramyocardial reentry, at which time the Purkinje system becomes irrelevant.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference64 articles.

1. Electrical Turbulence in Three-Dimensional Heart Muscle

2. Janse MJ Wilms-Schopman F Wilensky RJ Tranum-Jensen J. Role of the subendocardium in arrhythmogenesis during acute ischemia. In: Zipes DP Jalife J eds. Cardiac Electrophysiology and Arrhythmias . Orlando Fla: Grune & Stratton Inc; 1985:353–362.

Cited by 239 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3