Affiliation:
1. Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education , Taiyuan University of Technology , Taiyuan , China
Abstract
Abstract
Current research in robot compliance control is unable to take both transient contact force overshoots and steady-state force tracking problems into account. To address this problem, we propose a fuzzy fractional order (FO) adaptive impedance controller to avoid the force overshoots in the contact stage while keeping force error in the dynamic tracking stage, where traditional control algorithms are not competent. A percentage gain is adopted to map FO parameters to integer order (IO) parameters by their natural properties, and a fuzzy logical controller is introduced to improve the system stability. The simulation results indicate that the proposed controller can be made more stable than and superior to the general impedance controller, and the force tracking results also have been compared with the previous control methods.
Subject
Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献